skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Davies, A M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A computational framework for the solution of op- timal control problems with time-dependent partial differential equations (PDEs) is presented. The optimal control problem is transformed from a continuous time and space optimal control problem to a sparse nonlinear programming problem through state parameterization with Lagrange polynomials and discrete controls defined at Legendre-Gauss-Radau (LGR) points. The standard LGR collocation method is coupled with a modified Radau method to produce a collocation point on the typically noncollocated boundary. The newly collocated endpoint allows for a representation of the state derivative and control on the originally noncollocated boundary such that Neumann boundary conditions may be satisfied. Finally, the method developed in this paper is demonstrated on a viscous Burgers’ tracking problem and the results are compared to an existing solution. 
    more » « less